Distinct developmental pathways underlie independent losses of flight in ratites.
نویسندگان
چکیده
Recent phylogenetic studies question the monophyly of ratites (large, flightless birds incorporating ostriches, rheas, kiwis, emus and cassowaries), suggesting their paraphyly with respect to flying tinamous (Tinamidae). Flightlessness and large body size have thus likely evolved repeatedly among ratites, and separately in ostriches (Struthio) and emus (Dromaius). Here, we test this hypothesis with data from wing developmental trajectories in ostriches, emus, tinamous and chickens. We find the rate of ostrich embryonic wing growth falls within the range of variation exhibited by flying taxa (tinamous and chickens), but that of emus is extremely slow. These results indicate flightlessness was acquired by different developmental mechanisms in the ancestors of ostriches (peramorphosis) and the emu-cassowary clade (paedomorphosis), and corroborate the hypothesis that flight loss has evolved repeatedly among ratites.
منابع مشابه
Phylogenomic evidence for multiple losses of flight in ratite birds.
Ratites (ostriches, emus, rheas, cassowaries, and kiwis) are large, flightless birds that have long fascinated biologists. Their current distribution on isolated southern land masses is believed to reflect the breakup of the paleocontinent of Gondwana. The prevailing view is that ratites are monophyletic, with the flighted tinamous as their sister group, suggesting a single loss of flight in th...
متن کاملEvolution: Flight of the Ratites
The flightless ratite birds are scattered all across the Southern hemisphere, on landmasses that have long been separated from each other. But how did they get there? They flew in from the North.
متن کاملRab11 in Disease Progression
Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...
متن کاملScientists reveal new picture in the evolution of flightless birds.
Because of their far-flung geography and colorful examples including the African ostrich, Australian emu, New Zealand kiwi, and long-lost giants such as Madagascar elephant birds and 12-foot-tall New Zealand moa, Baker et al. (2014) have examined a fascinating part in the story of the avian tree of life: Flightless birds, or ratites. Straddling the middle ground and of great debate is the South...
متن کاملAssessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke
The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology letters
دوره 13 7 شماره
صفحات -
تاریخ انتشار 2017